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INTRODUCTION

It is well known that, generally speaking, continuous one
valued functions of one or more almost-periodic func

tions lead again to almost-periodic functions. Also it has 
been shown that in various situations where problems with 
almost-periodic data give rise to many-valued solutions, these 
solutions are themselves almost-periodic, or at any rate show 
interesting almost-periodic features. The case of algebraic 
functions was first treated by Walther1*, who proved that 
the solutions of an algebraic equation whose coefficients 
are complex almost-periodic functions of a real variable f 
are always almost-periodic functions, provided the discrim
inant D(t) of the equation not merely is different from zero 
for all t but actually has a positive number as the greatest 
lower bound of its absolute value. By means of well-es
tablished relations between the translation numbers and the 
Fourier exponents of an almost-periodic function one can 
easily obtain from Walther’s proof some first results on the 
connection between the Fourier exponents of the solutions 
of the equation and the Fourier exponents of the coefficients.

The latter result was sharpened by Cameron2* in an in
teresting paper dealing with the general question of implicitly 
given almost-periodic functions. Cameron also answered in

1) A. Walther, Algebraische Funktionen von fastperiodischen Funk
tionen. Monatshefte für Mathematik und Physik. Bd. 40, 1933, p. 444—457.

2) R. H. Cameron, Implicit Functions of Almost-periodic Functions. 
Bulletin of the American Mathematical Society. 1934, p. 895—904.
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the negative the question left open by Walther, whether 
the restriction on the discriminant that GLB\D(t)\>0 
could be replaced by the weaker condition D(t) 4= 0. In fact 
he stated that there exists an almost-periodic function f(i) 
which, while f(t) 4= 0, has GLB | f(t) | — 0, and which has 
the property that the two continuous roots ± )//’(/) of the 
equation y2— f(t) = 0 (with discriminant 4/(0) are not al
most-periodic1/

In the present paper we investigate systematically the prob
lem of the almost-periodic solutions of an algebraic equation 
whose coefficients are almost-periodic functions of a real 
variable and whose discriminant is not near zero. We shall 
not make use of the previous investigations quoted above, 
but start afresh ; the former results will naturally present 
themselves in the course of our investigation. The problem 
will be studied both from an analytical and from an alge
braic point of view. That the latter to some degree predo
minates is simply due to the fact that a certain Abelian 
substitution group, the “almost-translation group” of the 
roots of the equation, presents itself as a natural basis for 
any thorough-going discussion of the problem and turns 
out to have a fundamental influence on the structure of the 
solutions. A principal result of our paper is the fact that 
any arbitrarily given transitive Abelian substitution group 
can occur as the almost-translation group of the roots of 
an algebraic equation with almost-periodic coefficients. Thus 
the solutions of an algebraic equation present a much more 
rich and varied aspect when the coefficients are general al-

i) Since Cameron did not indicate explicitly the construction of such 
a function, the present authors have constructed an example which pre
sumably follows the same lines.
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most-periodic functions than in the classical case when the 
coefficients are pure periodic functions with a common 
period, which leads to only cyclic groups.

The paper is divided into seven sections. In section I 
we set down, in such form as will he most convenient for 
our later applications, some familiar facts concerning Abelian 
substitution groups and their character groups. In section 
II we introduce the notion of almost-translation substitution 
and almost-translation group, basing our considerations on 
an arbitrary finite set of complex functions. In section III 
we apply the notions and results of section II to such sets 
of functions when they form the roots of an algebraic 
equation with almost-periodic coefficients. Section IV (like 
section I) is of auxiliary character, and assembles some well 
known important relations between the translation numbers 
and the Fourier exponents of one or more almost-periodic 
functions. In section V we apply these relations to our pres
ent problem. The principal contribution of the paper is 
found in section VI, where we deduce necessary and suffi
cient conditions that a given finite set of almost-periodic func
tions shall have as its almost-translation group an arbitrarily 
given transitive Abelian substitution group. In these condi
tions the characters of the group play a predominant role; 
and by means of the characters we are enabled to give a 
certain canonical representation of the functions considered. 
We also give general examples — which from various as
pects may be said to be the simplest, as well — of sets of 
functions with arbitrary transitive almost-translation groups. 
The paper is concluded in section VII by the application 
of the results of section VI to the original algebraic problem.
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I. Preliminary Remarks on Abelian Substitution Groups, 
life shall be concerned throughout with substitutions

V V which permute the m objects in a finite set. If the 
objects are distinguished by attaching the indices 1, . . m 
Io a fixed symbol, we shall denote the set by enclosing the 
fixed symbol in [ ]’s: e. g. [a] denotes the set composed of 
a1# . . a . Where no ambiguity arises we shall not distin
guish between a substitution operating on the elements of 
[a], and the corresponding substitution operating on the in
dices. Thus we shall customarily denote the substitution S

We shall indicate the effect of <S on any ah by writing 
ag = Sah. The substitution resulting from operating first 
with and then with S2 will be denoted by S2St. Finally, 
a relation which holds between each ah and its correspond
ing Sah will frequently be denoted by enclosing a specimen 
relation in [ j’s. Thus if, as often in the later sections, the 
n’s represent numbers such that | ah — Sah | < f for h — 1, 
..., m, we shall write simply [| | < e ] .

Let F be an Abelian group of substitutions on [«] (or 
on the indices of [a]). A generating system of / is a 
set of elements of 7’, say S't, . . ., S', in terms of which 
evèry element S of r can be expressed as a power pro
duct, as S = (S'x)Cl . . . (S')c</. (If this representation is unique 
in the sense that each factor (S'.)e‘ is uniquely determined
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by S, the generating system is called a basis of E). A gen
erating system which contains the smallest possible num
ber, say of elements A is called a minimal generat
ing system. This number which is characteristic of 
the group, has a property which is particularly important 
for our purposes, namely that out of every generating sys
tem there can always be chosen n elements,
say S't, . . ., S' , such that (E denoting the identity element) 
for every relation (S'L)Pl . . . (S'u)e^ = E between these ele
ments, we have G CD (et, .. ., et() > 1.

Of special importance for our investigation is the case 
where the Abelian substitution group F is transitive. 
Then /’ is of order m, and each substitution of F is uniquely 
determined by specifying its effect on any one element of 
[a]. Hence we can always assign the indices 1, ..., m to 
the objects a and the substitutions S in such a way that 
Vi = «h’ s°that si= G,= C’,...)•Such a 

concordant indexing of [a] and r has the readily verifiable 
advantage that the effect of multiplying every element of F 
by any fixed element Sh is to perform on the elements of 
F a substitution whose symbol (in terms of the indices) is 
identical with that of Sh. Thus, if = Sh, ■ • - , ShSm —
Sh , then Shi, ..., Sh is a permutation of Sx,.. Sm, and

, interpreted as a substitution on [a], is pre

cisely Sb.
Since r is Abelian we know that a complete set of char

acters of 7’ forms (with respect to ordinary multiplica
tion) a group F isomorphic with F. We may then denote 
the elements of the character group by %t(S), . . %/n(S).
(We shall denote the principal character by its value, 1).
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The notions of generating system and minimal generating sys
tem apply to I * as they did to I', but with certain additional 
features due to the connection between the two groups. 
Thus, we shall lind useful for our later applications the 
following well known simple criterion for a generating 
system of /’*: the characters / form a generating
system of /’* if and only if /x (S7[) = %i(S9), . . //£*) =
Z7(Sf/) implies *S7i = S . Also, since F* is isomorphic with 
F, a minimal generating system of /’* has the same num
ber fi of elements as a minimal generating system of 
Further, out of any generating system /x, ..., / can be 
chosen fi characters, say , . . ., , such that every relation
(Zi)e‘ • • • (Zu)'“ = 1 implies that GCD (ex, . . ., ej > 1 . 
Finally, since /' is transitive, and since by definition 
z(S7l)z(Sf/) = z(S/}S;;), it follows from the previously noted 
result of indexing the elements of F and [a] concordantly : 
If /(S) is any character and S, ... ., S. is just that per- 
mutation of S\, . . ., Sm produced by applying to the indices 
of the S’s the substitution which denotes Sh, then

Z (S/t) Z (Si) = Z (Shi), • • •, Z (SA) Z (S,„) = Z (\ ) •

We conclude this section with some remarks on those 
powers of the substitutions of a (not necessarily transitive) 
group F which leave a given element of [a] unaltered. For 
fixed element ah we may regard the relation Se ah = a]t 
as an equation in the variable substitution S, whose range 
is the group F. We denote by vh the least positive integer e 
for which this relation is an identity in S. Trivially, vh is 
not greater than the order g of the group, since then 
^'ah = Eah ~ (lh> not on’y f°r every S in F, but for every 
ah in [a]. Equally trivially, vh<ml, since the set of all 
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substitutions on [a] forms the symmetric group 2" of order 
ml. If r is Abelian and transitive, and hence of order m, 
we have the sharper result that vh is < m; and in fact vh 
is independent of h and equal to m', the least common 
multiple of the orders of the elements of r. If the Abelian 
group r is intransitive, each ah belongs to a transitivity 
set containing, say, mh elements; and /' is homomorphic 
with a transitive Abelian group Z” operating on this subset 
and hence of order In this case vh — m'h<mh, where mh 
is the least common multiple of the orders of the substi
tutions in rr.

II. Almost-Translation Substitutions and the Almost- 
Translation Group.

In this section we suppose that the m elements of the 
finite set [a] upon which substitutions are to be performed, 
are distinct one-valued complex functions, f^t), 
of a real variable, defined for — oc < t < + oo. In accord
ance with our previous notation the set is then denoted 
by [/■(/)].

We first assume only that each function is continuous 
for all values of t.

Definition. For given 6>0 we shall say of a real 
number v that it e-performs the substitution S on [f(t)] if

[ I fh (* + ?) — Sfh (0 I < f] for — oc < t < + oc.

We shall denote by the set of all real numbers
t each of which ^-performs the fixed substitution S on 
[Z(0]i and by the set of all real numbers r each
of which ^-performs some substitution on [/(/)].
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Remark. As the m functions are distinct from each 
other, it is clear (quite apart from any consideration of the 
continuity of the functions) that for sufficiently small pos
itive «, no T can «-perform more than one substitution 
on [/’(f)]. In other words, there exists «*>0 such that if 
()<«<«* and T belongs to both [t(Si)(«)} and ( s2) (f) )> 
then = S2.

Lemma. If e {^(S1) (^i)and r2 e { r(ss)(^2)}» then 
Or + r2) e {t(SjSj) Gq + f2)} and (^ + r2) e {^^(«j. + «2)}.

Proof. By assumption [ |/], (f + rt) — S\/A(/) | «J . Re
placing t by f + r2,

(1) [lA// + C’ + Ti) —^140+ Li) I — éil-

Also, by assumption [ | fh(t + r2)— S2/A(f) I ^2], whence, re
placing fh by S1fh,

(2) [ISi/kd + ^-SjSjqoiS^]-

From (1) and (2) follows

[ I //1(^ + 'r2 + Tl)~^2^1//1(Û I = £i + fJ’ 

which says that (r2 + Tj) e | T(s2s1) (fi+f2) ) • The other half 
of the lemma is derived similarly (or simply by interchang
ing the indices 1 and 2).

Corollary. If r e (t(S) («) } and v is any positive inte
ger, then rr e / r^r^r«) }, or2)

V\T(S)^} S {*(s")Of)}-

1) The symbol e denotes the relation “belonging to’’, while the sym
bol s is used for positive numbers.

-) For fixed real r we shall denote by r ( r ) the set of all num
bers r i.
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Definition. If S is any substitution on [/"(/)] such that 
' } is relatively dense for every positive e, we shall say
that S is an almost-translation substitution on [f(t)], or that 
f(t)] admits S as an almost-translation substitution.

Theorem 1. The set I' of all almost-translation substitu
tions admitted by [/(/)] either vacuous or an Abelian sub
stitution group (which we shall call the almost-translation 
group of [f(f)]).

Proof. If F is not empty, let St and S2 be any sub
stitutions in T. For any « >0 take arbitrary e | r( S.

and r2 s J we Put fl = = 2 *n ^emma

above, we see that tx + r2 belongs to both ' } and
(G(S1s,)G)}- But these relations hold for every positive 8 
and corresponding t2; in particular, when e<8*, which 
requires that S2S£ = <S\.S2. Thus the product of any two 
substitutions in F is commutative. Furthermore, since the 

sets and j j are relatively dense for every

8 > 0 (actually we only need to have one set relatively dense 
and the other not empty), the set of all sums + and 
a fortiori (^sjG)}» relatively dense for all positive Fs. 
Thus S2SL = StS2 belongs to F (which is a subset of the 
finite group so /’ is an Abelian group.

Corollary. If [/'(/)] hns an almost-translation group F, 
then each function f^f) is almost-periodic.

Proof. The identity-substitution E must be in /’; i. e. 
every positive 8 determines a relatively dense set {'r^G)} 
of real numbers z for each of which

[\f„(l+O-Efh(.t)\< d-
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Since Efh — fh, this simply says that for each fixed /?, every 
r(F)(«) is a translation-number (é) of fh(t)l\

Theorem 2. A necessary and sufficient condition that [/(f)] 
admit an almost-translation substitution (and therefore haue 
an almost-translation group r) is that the set ' (f) } be
relatively dense for each e >0.

Proof. The necessity is immediate. To prove the suf
ficiency we show that the identity E is actually admitted 
by [/(/)] as an almost-translation substitution. By assump
tion the set ! is relatively dense, and to each of

I [/]Vn!/J

the numbers r = -rr-J there corresponds a substitution
I /HIS (depending on r) such that te | (S)^ !j | ’ ^ence ;n‘7 

belongs to { r(Sm!)(e) }, i. e. to * r(E)(f) ). Thus the set { 7/(r)(é) } 
contains the relativelv dense set m! | j, and is it-

Iself relatively dense.

For the remainder of this section we suppose that we 
have to do with a finite set [/'(/)] of functions, each of 
which is almost-periodic. By the above corollary, this 
condition is automatically fulfilled when the set has an 
almost-translation group. We collect here some remarks 
concerning this case which will be useful in later sections;

1) In accordance with the usage prevailing in the literature we shall, 
throughout the paper, denote by zy(£) a translation-number (correspond
ing to e) of a single function f(f). We have been careful to differentiate 
from this the two other symbols of similar type introduced here, viz. 
r(S)(t) and (e), each of which denotes a number performing an office 
similar to that of the translation-number of a single function, but in 
connection with a finite set of functions.



Algebraic equations with almost-periodic coefficients. 13

in particular we shall see that the converse of the above 
corollary is also true, that is that the almost-periodicity of 
the separate functions fh(f) implies the existence of an 
almost-translation group of the set [/’(/)].

1°. A familiar and important property of such a set is 
the fact that each e > 0 determines a relatively dense set 
of real numbers t, each of which is a translation number 
for every one of the functions fh(t\ so that for 1 < h < m,

I fh (f 4- r) — fh (0 I < s for — oc < t < + oo.

Even more, as Bochner has shown, there exists an almost- 
periodic function F(t), called a major a nt of the set, such 
that for every positive e the set J rF(f) ) of its translation
numbers is identical with the set-theoretical product of the 
sets {'Ty(f)}, {'r/n,(£)) °f translation-numbers of the
individual functions.

2°. Our set [/‘(f)] certainly admits the identity E as an 
almost-translation substitution, and hence has an al most- 
translation group /' (which may consist of E only). 
In fact, for every 6>0, the set determined in 1°
is precisely the set {r(E)(«)|.

3°. If S is such a substitution of the whole group 2/n 
that for some t> 0 the set { T(S)(é) } is not empty, then the 
set {«(S)(2s)} is relatively dense. For if r0 is some num
berin {r(S)(é)} and t e (r(E)(f)}, then (r0 + O e ' r(S)(2f)}, 
and this set is therefore relatively dense since is
relatively dense.

4°. There exists a fixed number Z* > 0 with the prop
erty fhat any substitution S of belongs to 1' provided 
only that for some positive the set 'r^Çe')^ is not
empty. For let us denote by z/(t) the (possibly vacuous, 
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certainly finite) set of substitutions belonging to 2';;) but 
not to F, each of which is «-performed by some real r. It 
is evident that 0 < «L < t2 implies ^(«J c and that 
this, combined with the finiteness of every ./(«), implies 
that for some positive «**, 0 < «t < e** < e2 gives us 4(e^) 

= z/(«**) c z/(«2). If z/(«**) actually contained a substitution 
S, for this S every {T(S)(f)} would be non-vacuous, and 
by 3° every fy(S)(2«) } would be relatively dense. S would 
then by definition belong to r, contrary to hypothesis. Thus, 
if for some positive e <, e**, a substitution S of is «-per
formed by even one r, then that substitution belongs to F.

5°. Let /h(f) be any fixed member of [/(Øj, and vh the 
corresponding positive integer (defined in section I) for which 
SPhfh(t) = f°r every S in F. Then for each suffi

ciently small e (in fact for e vhE**'),

For, for each S in F, 3 {r(srÄ)(e)}, and {r(srft)(«)}

2 and hence

the is empty on

But the last relation, just 
for trivial reasons for every

actly the set MM—
I

proof is completed.

5**j. Now the set-theoretical sum, 
in 2, of the sets MM—U, is ex-

I * vJf
so (r. (e)} D V. U, and the

to F, since for such an S 

account of 4° (as —<
\ vh

taken over all the S’s

proved for each S in r, holds
5 in which does not belong 

set Må}
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III. The Existence of an Almost-Translation Group for 
the Solutions of an Algebraic Equation with Almost-Peri- 

odic Coefficients.
Let

(3) ÿ" + æi(0y'"-1+•• • + ænl_1(0y + ^,„(0 = o

be an algebraic equation of degree m in the complex vari
able y, with leading coefficient 1 and remaining coefficients, 
xt(/), . . æ (7), almost-periodic functions of the real vari
able t. We denote the discriminant of the equation (which, 
by the way, is also an almost-periodic function) by

7)(/) = d[xt(t), xm(f)].

If D(t) 0 for —oc < t < + oc, the m roots of the 
equation are distinct for every value of t, and since the 
coefficients are continuous, these roots may be sorted in 
just one way (except for choice of notation) into m one
valued functions, z/1(7), • • •> each of which is con
tinuous for all values of t. Further, as the coefficients æ (0 
are bounded and uniformly continuous, the roots yh(f) will 
also be bounded and uniformly continuous in — oc < t < + oc.

We now assume not merely that D(f) 4= 0, but that 

|D(f)| > « > 0.

Then there clearly exists a ß > 0 such that for every t

(4) I yh(t)~ yg(t) I > ß for h 4= g.

Consequently, for any two values t± and t2, there can exist 
at most one substitution S (we may denote it by S(tlf /2) 
to indicate its dependence on tt and /2) such that

We shall now prove the important theorem:
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Theorem 3. The set \jjh(f)^ of continuous solutions of an 
equation (3) with almost-periodic coefficients Xj(J) and discrim
inant satisfying | D (£) | > ct > 0, has an almost-translation 
group F, and hence is composed of almost-periodic functions.

The last fact was first given by Walther, as was men
tioned in the introduction.

Proof: According to theorem 2 of section II it suffices 
to show that to every given r > 0 there corresponds a 
relatively dense set of real numbers e- of num
bers T to each of which there corresponds some substitu
tion S = S(r) of 2’/n such that [\yh(t + v) —Syh(t)\ < f]. 
Naturally it suffices to consider “small” positive f’s; we 

may therefore take the given e to be < -, where ß is the 

positive number occurring in the inequality (4). With this 
restriction on f, if for some two values and /2 we have 
found two substitutions >S\ and S2 such that

[I ?//, Oi) — Si yh (Q I < f] and [I yh (tf) — S2 yh (/2) | <U ], 

we may conclude that = S2.
Corresponding to the given e we determine (as is pos

sible because the coefficients x-(f) are bounded) a ô > 0 
such that for any two real numbers t' and l" satisfying

|x/(f)—< Ô' (./ = 1, . . ., 7Z?)

there is a substitution S = S(t',t"), for which

I —Sÿh(OI < j •

From the preceding remark this substitution is uniquely 

determined since < e < —.
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Consider the relatively dense set of translation
numbers (corresponding to this d) of a majorant X(t) of 
the coefficients xXt). We shall prove the relative density 
of by showing that 2 °tber
words, we shall show that to each fixed t satisfying for 
all t the inequalities

\xj(t + T) — X.(t)\<d (j=l,...,ni)

there corresponds a substitution S' = S(r), such that

[\ylSt + T^~s.f//,(0l Sd (—oc < / < + ex?).

Note first that, from the manner of choosing d, our 
fixed t and any fixed t certainly determine one, and only 
one, substitution S = S(/,i) which satisfies the relation

+ O —\yA(OI < I •

The proof will obviously be complete when we have shown 
that this substitution S(t,r) is independent of t, i. e. 
depends only on t. For this purpose we first determine 
an ij > 0 such that the inequality |f — t" | <1 // implies the 

inequalities | yh(t'} — yh(t") | 5^ for 1 < /i <1 m> i- e- implies

I Z7?l(r) — Æ?Z77i(f") I < I .

Since the whole real axis can be covered by intervals of 
length //, in order to prove that S(t, t) is independent of 
t it suffices to prove that for two arbitrary numbers tt and 
t2 satisfying | tr —12 \ < ly, the two substitutions St = S(ft, r), 
and S2 = S(f2,r) are identical.

Vidensk. Selsk. Math. fys. Medd. XV, 12. 2
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From the definition of St and S2 we have

1.7/A+O —Sii/zA)! < I

Since | (tt + t) — (t2 + i) | = | tt — t2 | < //, we have also

I ?//. Gi + 0 — Eyh (t2 + 0 I S | •
Hence

I yh (4) — s-2 yh Où I < 3 + I + f = f

Replacing yh by lyh, this becomes

(5) s2.s\ WUlSd-
On the other hand, from \tt—t21 < // we get

(6) Ij/aOi)—EyA(^)l = f <£

But (as we emphasized above) relations (5) and (6) enable 
us to conclude that S2St ' and are identical. Thus St — 

S2, and the proof is completed.

We here introduce an abbreviation of our notation 
which will be useful later on. If /’(/) and g(t) are almost- 
periodic functions we shall write

f T \ c \\ V/ = \ (i J

in order to indicate that, corresponding to any > 0 (or, 
equally well, to any sufficiently small *1> 0), there exists 
an £2 > 0 such that y^(f2)} £ $uch symbolic ab
breviations we shall use not only in connection with the 
translation numbers of single almost-periodic functions,
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but also for translation numbers r^(f) and referring
to sets of functions. For instance, by

/ T \ C / r \V [f] / \gf

we shall mean that to any > 0 there corresponds an 
t2 > 0 such that {^jOa)} Ç {^(*1)}-

In terms of this notation we see that, for our alge
braic equation with almost-periodic coefficients and 
|D(OI > a > 0, the translation numbers of the majorant 
X(t) and the translation numbers belonging to the set of 
roots [«/(/)] are in so far the same as

{ } ^ { r&]} and = {rx}-

The first of these two relations has been directly shown 
in the course of the proof above. The second relation holds 
because, corresponding to any given > 0, since the roots 
yh(t) are bounded, we can find a positive t2 so small that 
every T which ^-performs some substitution on [y(t)] must 
satisfy, for all t, the inequalities

|æzG+r) — Xj(t) I < fl (./ = 1, . . m).

IV. Auxiliary Remarks on Relations between 
Translation Numbers and Fourier Exponents of Almost- 

Periodic Functions.
With any almost-periodic function /(/) there is associ

ated a certain series as its Fourier series,

/*(0 co ^anelAnl.

In the treatment of various questions concerning the Fou
rier exponents 2n of /’(0> it is not just the set of exponents 
themselves which is of primary importance, but the larger

2* 
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set containing all linear combinations with integral coeffi
cients of a finite number of these exponents,

£71 ^1 + £72 Â2 + . . . + gN^N-

This set is usually denoted by Mf and is called the mod
ule of the function f(f); evidently it is the smallest 
number-module which contains all the exponents

There exist important relations between the translation 
numbers and the exponents of an almost-periodic 
function /’(/). Especially we shall have to use a necessary 
and sufficient condition0 that the module Mg of an almost- 
periodic function g (/) be contained in the module of 
an almost-periodic function /(/), expressed in terms of the 
translation numbers of the two functions. By using the 
abbreviated notation introduced at the end of the previous 
section we can express this condition very simply as follows:

Lemma 1. Let /(£) and g(t) be two almost-periodic 
functions. In order that Mg c it is necessary and suf
ficient that Ç {%/•

Roughly speaking, the fewer translation numbers, the 
more exponents.

We shall also recall a relation between the translation 
numbers and the Fourier exponents of a single almost- 
periodic function:

Lemma 2. In order to show that the real number ft be
longs to the module of an almost-periodic function 
f(0 °° Xa^g1^'1^ it suffices to show that to any positive t

1) Compare H. Bohr, Ueber fastperiodische ebene Bewegungen. Com- 
mentarii Mathematici Helvetici. Vol. 4, 1932, p. 51—64.
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there corresponds a positive ô — â(e), such that each t 

belonging to satisfies the inequality

|ei0T-l|< e.

We shall not enter upon the proof of these two lem
mas, but content ourselves with pointing out that they 
depend essentially on a famous theorem of Kronecker on 
Diophantine approximations. As we shall make direct use 
of Kronecker’s theorem in section VI, but in a form 
slightly different from the usual one, we take this occasion 
to re-state his theorem in this form, using the exponential 
function eIf.

Kronecker’s Theorem. Let Â15..., be arbitrarily 
given real numbers, and let be given complex
numbers of absolute value 1. In order that to each posi
tive e there correspond a real t satisfying the N inequalities

£ « (n = 1, .... JV),

it is necessary and sufficient that whenever a linear rela
tion with integral coefficients

<71^1 + • • • + = 0

holds between the Z’s, the corresponding relation

• • • W* = 1

hold between the t/’s.
One sees immediately that the condition is necessary; 

the real content of the theorem lies in the fact that it is 
also sufficient.
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V. Relations between the Fourier Exponents of the 
Roots and the Fourier Exponents of the Coefficients of 

an Algebraic Equation.
We return to the algebraic equation

y(/) gm 1 + . . . + xm  ! (0 {/ + æ;n (0 = 0

of section III. We denote by A(0 some majorant of the 
almost-periodic coefficients x^f), . .x (f). As is well 
known, the module Mx is independent of the choice of the 
majorant, and is not only the smallest number-module 
containing all the Fourier exponents of X(f), but is also 
the smallest number-module containing all the Fourier ex
ponents of all the functions x(f).

As before, we assume that the discriminant of the equa
tion satisfies the inequality

G LB |n(OI>o,
X < t < 00

so we know that the equation has as continuous roots 
a set of almost-periodic functions,

.Vi (0,.... y,n(0.

Thus the roots have a majorant Y(f), and the module 
My is the smallest number-module containing all the Fou
rier exponents of the functions in the set [y(Oj.

In this section we shall discuss the connection between 
the Fourier exponents of the roots of the equation and 
the Fourier exponents of its coefficients. The connection 
will be exhibited by demonstrating some important rela
tions between the modules Mv, Mv, and M , and their 
multiples.1)

1) By the multiple rM we shall understand the module arising 
from the module M by multiplying every number in M by r.
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Theorem 4. Mv ç Afy.

Proof. This is an immediate consequence of the fads: 
that the coefficients rr(/) are polynomials in the roots 

and that the Fourier series of a polynomial function 
of almost-periodic functions is determined simply by formal 
calculation from the Fourier series of these functions. Thus 
each exponent of each x-(f) is a linear combination with 
integral coefficients of the exponents of the roots • • •> 
ym(t), and therefore belongs to 7tfy. Hence the whole mod
ule is contained in Mv.

We now proceed to a theorem which is not at all trivial, 
and the proof of which uses essentially the connection 
between Fourier exponents and translation numbers men
tioned in section IV. As in section II we denote by /’ the 
almost-translation group of the set [i/(/)J of roots, and by 

vh (< m) the least positive integer e such that Seyh = yh 
for every S in F, as defined in section I.

Theorem 5. For each h among 1, . . ., m ive have the 
relation
(7)

The fact that to each of the roots uh(t) there corre

sponds some number v, < m for which M c — Mx, was
— Vh — y A

first found by Cameron in the paper quoted in the in
troduction.

Proof. In remark 5° of section II it was shown that 
for each sufficiently small e,
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Hence, 
section

using the abbreviation introduced at the end of 
III, we have

(8) sK,}-

But, as shown in section III, the translation numbers 
and are the “same” in the sense that

( T[y] ) C { 7 X } aild { TX } - { T[y] } •

Hence the relation (8) is equivalent to the relation

Now it is evidently the same thing to say of a number r 
that it is a vh'Tx(d) as to say that it is a Tx*(d), where 
X*(t) denotes the function x(— Thus we may write

\viJ
W 5

and by lemma 1 of section IV we conclude that

G Mxtl.

But the Fourier exponents of Ä*(7) = X jj are simply the 

exponents of X(t) itself, each divided by vh. Hence 4/v* = 
1
v Mx, and we get the desired result,

Corollary 1.

For this merely contracts to one relation the m relations

Af, c —. Afv, each of which must hold since every v, , yh — ml x 11
being < m, is a divisor of ml. This corollary, substantially 
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due to Walther, may also be proved readily without using 
the sharper relations (7).

Corollary 2. The modules Mx and Tfy have the same 
maximum number of rationally independent elements (i. e. 
elements linearly independent with respect to the rational 
domain).

This follows immediately from cz3fy and TIyC

In the remainder of the paper we shall confine our 
attention to the case where the almost-translation group F 
is transitive. In this case we get a rather complete sur
vey of the relations connecting the Fourier series of the 
different roots. This restriction is a natural one since, 
when our given algebraic equation has as roots a set of 
functions with an intransitive group r, it may be split up 
into a number of equations of lower degree, each one 
having as its roots the functions of a transitivity system 
of the original set; at the same time, as we proceed to 
show, this process does not enlarge the modules of the 
coefficients, i. e. the module of the coefficients of each 
new equation is contained in the original module Mx.

For let ..., i/„(0 be a transitivity system of the 
set [y(0], and let

(y—yi(0) • • • (y—y(>(0) = ye+ ?i(0ye_1+... + £/0 = o 

be the corresponding new equation, with ^(Ø as a major
ant of its coefficients. Then we have to show that

Ms Ç Mx.

Now, roughly speaking, every “fine” translation number of 
X(f) gives rise to one of the substitutions in F, and hence,
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when applied to the transitivity system y1(t),..., yAt), 
merely effects some permutation of this subset. But this 
means that it is a “fine” translation number of æ(0. 
Speaking precisely, we have

and therefore
Mz Q mx.

VI. The Fourier Series of a finite Set of Almost-Periodic 
Functions with a Transitive Almost-Translation Group.

In section II we introduced the notion of the almost- 
translation group of a finite set [/*(/)] of zn distinct com
plex functions of t, each function defined and continuous 
for —co < t < + oc. We there showed that a necessary 
and sufficient condition that such a set of functions have 
an almost-translation group / is that each function be 
almost-periodic. In section III we found that in order 
that an algebraic equation of degree m in the complex 
variable y with leading coefficient 1 have as roots a set 
y(t)] of m distinct almost-periodic functions of t (i. e. 

a set of m functions having an almost-translation group), 
it is sufficient that (a) the coefficients be almost- 
periodic functions of t, and (b) the discriminant /)(/) sat
isfy the inequality

(9) GLB |/)(/)|>0.

Condition (a) is evidently necessary as well; for the co
efficients of the equation, being symmetric polymials in 
the roots, must be almost-periodic themselves. As regards 
the condition (b), concerning the discriminant, the situation 
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is more complicated. In fact on the one hand, as men
tioned in the introduction, condition (b) cannot be re
placed by the weaker condition, /)(/) 0 for all /; on the 
other hand there exist algebraic equations of degree m with 
almost-periodic coefficients and satisfied by m distinct al
most-periodic functions, for which not only G L B | Z>(7) I = 0 
but even D(t) = 0 for some t^\ Thus the restriction (9) 
on the discriminant introduces an element extraneous to 
the notion of the almost-translation group. In the present 
section, therefore, where we deal with those properties 
stemming directly from the group, we shall not think of 
our functions as roots of an algebraic equation, but only 
as having an almost-translation group 7’. As pointed out at 
the close of the previous section, we consider only the 
case where F is transitive.

Let, then, [/(f)] be a finite set of in distinct almost- 
periodic functions having as almost-translation group 
a transitive Abelian group 7’ of substitutions on the set. 
As we remarked in section I, the group has m elements 
which we may (and do) index concordantly with the func
tions, so that Shf{ — fh. We begin by deducing a number 
of properties of the Fourier series of the functions fh(f).

1°. Every function h = 2, . . in, has exactly the

1) This may occur even in the case where T is transitive. A 
simple example is given by the two (periodic) functions

y1(0 = * G''+e_,<) = cos/, y2(t) = —~ (ea + e~lt) = — cost

with the translation group r = of order 2, where the discriminant 
I)(t) — 4 cos2/ of the corresponding equation

(y —y/0) • (y —y2(0) = y2 —cos2/ = 0

71 .
vanishes at / =---- p nn.

2 
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same Fourier exponents, , Â2, . .,, as f (f) ; and the 
Fourier coefficients in fh(f) and /’(7) belonging to the 
same exponent Z;), have the same numerical value. 
Thus we may write the Fourier series of the functions in 
the form

4(0 °° yiVh,nanelknt (A = 1, . . m),

where each factor n has the numerical value 1. Within 
the restriction that their numerical values be 1, the factors 

n in the Fourier series of any one function may of course 
be selected quite arbitrarily. Thus, while keeping the nota
tion above for convenience, we shall suppose that each 

n in the expansion of / (7) is equal to 1.

Proof. Corresponding to any h among 2,..., m, and 
to an arbitrary sequence of positive numbers tending 
to zero, we can choose a sequence of translation numbers 

e Then the sequence of functions
will tend to fh(f) uniformly throughout —oa < t <oe 
that is the function fh(f) belongs to the class of almost- 
periodic functions usually called the uniform closure of the 
set {^(t+k)} and denoted by C^/jOd-Å")}. H is a well- 
known property of such a set that every function in it has 
the properties ascribed above to fh(t).

2°. The factors ijm n corresponding to any
Fourier exponent are exactly the respective values, 
Zn(*S\), • • •’ Xn(sni)> °f some character %n of the group r.

It will be convenient to represent this assertion by the 
following scheme, where, fixing upon any Zn, we have drop
ped the index n momentarily and have arranged in vertical 
columns the terms and the factors corresponding to this 
exponent in the Fourier series of / (0, . . .,
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tfi = x(si)
a é k 1 ^2 = X(Si)

a ti el k 1 t III

•
= X($m)

Proof. From the definition of a character it follows 
that we have to show that if SJh and are any (not ne
cessarily distinct) substitutions in JT, and if — S/l3, then

* Vht = Vht’

Take again an arbitrary sequence of positive numbers con
verging to 0, say 0, and for each v denote by and 

arbitrarily chosen translation numbers belonging to 
ar,d {^(S; respectively. Then by the Iem

ma of section II the numbers — Tlr + r2r belong to 
Hence, as y~>oc,we have, uniformly through

out — oo </<+ oc,

It is a trivial fact concerning almost-periodic functions that 
uniform convergence of a sequence of such functions im
plies ordinary convergence of the coefficients belonging to 
any exponent. Since the coefficient corresponding to the 
exponent Â in the Fourier series of /(f-f-r), for arbitrary 
r, is given by aeIÅT, and since a 0, we conclude from 
the uniformly convergent sequences above that

Finally, since el/'Tir • elil*r =elk2,r for every v, we have in 

the limit Vhi • = rlha.
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3°. Those characters of r whose values actually occur 
(in accordance with property 2°) as coefficients in the 
Fourier series of f (t), . . form a generating sys
tem of the character group r*.

Proof. Let us denote by Z1, Z'2,..., Zq Hie distinct 
characters in F* which thus appear. On the analogy of 
the scheme in 2°, we write their values in vertical columns, 
thus:

Zq G$i)
Zq (S2)

If we now apply the criterion for a generating system of 
F* which we gave in section I, we see that the denial of 
our assertion is equivalent to asserting that for some /? 4= <7 
the values in row h are identical with the corresponding 
values in row g. But this would make the Fourier series 
of fh(t) and /^(t) identical, which (from the uniqueness 
theorem in the theory of almost-periodic functions) would 
imply == contrary to hypothesis.

4°. If any linear relation with integral coeffi
cients, say
(10) f/1^1 + • ■ . + — 0 ,

connects a finite number of the Fourier exponents Zn, 
then we have the multiplicative relation

di) = 1
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connecting the characters / , . . %N corresponding (as 
in property 2°) to the exponents 2V, respectively.

The relation (11) may be expressed in terms of the 
values of the characters as a set of m relations

( 12) [Z[ (S„)]9'.. . [zK(Sh)]9» =1 (1 < ft < in).

Proof. Instead of proving the assertion for some arbi
trarily chosen relation (10) it will be more convenient to 
prove it simultaneously for all linear relations with last 
index equal to an arbitrarily chosen fixed N. As before, 
for fixed h, arbitrary sequence of positive numbers >0, 
and corresponding sequence tv of translation numbers 
with each tv e . (ér))» we have, uniformly throughout 
— oc < t < + oo, that fi (t + rr) -> fh (0, and hence for each 
n (= 1,2,.. .)

Hence for any arbitrarily small e the N inequalities

I I < E G? = 1, . . - , N)

are satisfied by some t (in fact by every rt, with sufficiently 
great index r). According to the “trivial” part of Kro- 
necker’s theorem stated in the end of section IV, this re
quires that, corresponding to each relation (10) with last 
index N, there must hold the corresponding relation (12). 
Thus (11) holds.

We now turn the problem about, i. e. start from a 
given transitive Abelian substitution group F, and 
ask what conditions a set of almost-periodic functions fh(t) 
must fulfill in order that they be distinct and that [/(/)] 
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have I' as its almost-translation group. To avoid misunder
standing, however, we emphasize that so far we do not 
know at all whether every type of transitive Abelian sub
stitution group can occur as the almost-translation group 
of some set [/*(£)]• Only after having proved the theorem 
below shall we take up the main problem of determining 
whether the conditions stated in the theorem can really be 
fulfilled for any given group of this sort.

Theorem 6. Let [/(/)] be a finite set of in almost-periodic 
functions, /t(0> • • •> /nj(0; an^ an ar^^rai'y transitive 
Abelian group of m substitutions which we denote by SL — 

, . . .,= j. Then in order that [f(f)] be com

posed of distinct functions and have F as its almost-translation 
group, it is not only necessary (as was shown above) but also 
sufficient that the following four conditions be fulfilled:

1. All the functions fh(.t) have exactly the same Fourier 
exponents Ân, and the absolute values of the corresponding 
Fourier coefficients are the same.

2. Further, the Fourier series of the functions fh(f) have 
the form
<13) //.(0 °°

where %n(S), for each n, is a character of the group F.
3. Those characters % (S) which actually occur in (13) 

form a generating system of the character-group F.
4. If any finite set, Zt, . . ., ZN, of the Fourier exponents 

are connected by a linear relation

with integral coefficients, then the corresponding characters 
are connected by the relation
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Proof. That m almost-periodic functions whose Fourier 
series have the form (13) must be distinct, is immediately 
to be seen from condition 3, which implies that for no two 
distinct indices, /? and g, are the Fourier series of fh(f) and 
/ (f) formally the same. (Here we use only the trivial fact 
that two distinct Fourier series cannot belong to the same 
function, in contrast to the corresponding point in the ne
cessity proof, where we had to use the uniqueness theorem, 
that two distinct functions cannot have the same Fourier 
series.) Since our functions are distinct, they have an almost- 
translation group and the main point of the proof is 
to show that condititions 1—4 insure that F' =

We first observe that it suffices to show that each of 
the substitutions of F belongs to I '. In fact, when this has 
been shown, it follows immediately that F' must be iden
tical with F. For then / ' must be transitive (since it con
tains the transitive sub-group F) and, being Abelian, cannot 
contain more than m substitutions.

By way of preparation we make the preliminary remark 
that the set-theoretical sum (</(/)} of the m sets of functions

{/;(/+«),(/'„,(/+Oj (-°c<fc<+oo)

is a majorisable set of almost-periodic functions, in fact 
majorisable by any majorant F(t) of the set [/"(/)] ; and that 
every function in {(/(f)} has the same Fourier exponents 
Zt, Z2, ... as each function in [/*(/)]. Hence, according to 
a wellknown theorem on majorisable sets, due to Bochner, 
it holds, roughly speaking, that formal convergence of the 
Fourier series of a sequence of functions drawn from the 
set (#(0) (i- e- actual convergence of the coefficients be
longing to each fixed exponent) implies uniform conver
gence of the sequence of functions. Exactly speaking: to 

Vidensk. Selsk. Maili.-fvs. Medd. XV, 12. 3
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each e > 0 there corresponds a positive integer and a 
A > 0 such that any two functions g'(t) X and

g" (t) æ of the set the coefficients of which
fulfill the inequalities

I b'n — bn 1 S (/? = 1 , . • ., N) .

themselves satisfy the inequality

I g' (t) — g"(t)\< t (—oc<t< + oc).

Now let <Sh be an arbitrarily chosen fixed element of 
/’. We shall show that Sh also belongs lo F', i. e. that Sh 
is an almost-translation substitution of the set From 
remark 4° in section II it suffices to prove that to some 
positive e< f** there corresponds at least one real number 
f which satisfies for all values of t the m inequalities

(14) I /;(/ + r) - SJ,(Z) | < e (/ = I m).

We first make clear, for each I, which of the functions 
/, fm is denoted by Shft. This can be seen at once 
by considering the Fourier series of the function:

ACC °° 2?Zn(^)«ne/A,!Z-

In this Fourier series the index I occurs only as index for 
that substitution of which the characters / are taken. 
As we noted in section I, since is a character of /', the 
substitution Sh performed on the index I simply results in 
replacing zn(Sz) by zn(s/A), that is by the product 
XnZn(^z)• Hence the function is just that function
among /\(t), . . fm(f) whose Fourier series is given by

We now proceed to prove that there exists a i which
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satisfies the inequalities (14). As the Fourier series of 
+ for an arbitrary fixed z, is given by

2’e,ÂnrZn(Sz)ane‘À«t,

and as, throughout, we deal only with functions of our 
majorisable set (,ç(/)), the inequality

I/X'+O-VXOIS«’
is (by the remark above) certainly fulfilled by any z; for 
which the N inequalities

< i (n = 1, .... .V),

i. e. (since |%n(Sz)| = 1) the N inequalities

(15) I (e'V— an| < <5 (n = 1, . . ., N),

are fulfilled. We sec that the index I has disappeared, so 
that any z satisfying the inequalities (15) will certainly 
satisfy the m inequalities (14). Denoting by a the maximum 
of I at I, ..., I av|, the inequalities (15) are certainly satis
fied by any z which satisfies

(16) |eU"T-Z„(Sh)|<^ (n = l,...,N).

But according to the “non-trivial” part of Kronecker’s 
theorem, the inequalities (16) certainly have a solution r 
since condition 4 assures us that to every linear relation 
with integral coefficients such as + ... + = 0
there corresponds the relation |Z1(Sh))ffl • • . I— 1- 
Thus the proof of theorem 6 is completed.

We can now easily prove the following corollary, which 
is to be considered one of the main results of the paper.

3
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Corollary. Corresponding to each arbitrarily ginen transi- 
tive Abelian group / of substitutions on the indices 1, . . in, 
there exists a set [/’(/)] ofm distinct almost-periodic functions 
which has / as its almost-translation group.

Proof. We have only lo show that to the given group 
F there correspond m almost-periodic functions f1(t),..., 
fm(t) whose Fourier series satisfy conditions 1—4 of theo
rem 6. In order to avoid any trouble arising from the 
somewhat intricate condition 4, we choose the exponents 
Â rationally independent, i. e. such that a relation

F . . . + gN^N — 0 with integral coefficients can occur 
only if every g is zero. Condition 4 then falls away. Next, 
to be sure that the series we set up are the Fourier series 
of almost-periodic functions, we limit ourselves lo only a 
finite number of terms. Now let / be any
generating system of the character-group /’*, let .. ., z 
be arbitrarily chosen rationally independent real 
numbers, and let ar, ..., a be arbitrary complex num
bers 0. Then it is clear that the m almost-periodic 
functions

/k<0 = (b = 1, . • m)
n = 1

satisfy conditions 1—4, and so the set [/(7)‘ has /’ as its 
almost-translation group.

If we wish to have as few terms as possible in the 
example just constructed we shall take q — p, where p is 
the number of elements in a minimal generating system 
of /’ (or of F*), mentioned in section I; and for our 
characters /x, . . ., %'u we shall take any minimal generating
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system of /’*. We shall show that the example thus ob
tained of a set [/(Oj of functions belonging to the given 
group T' is not only a simplest possible example, in 
that the Fourier series contains as few terms as possible, 
but at the same time is the most general example of a 
set fCO] belonging to jT, for which the functions fh(f) 
contain the minimum number // of terms. By this we 
mean that the only restriction (other than as to the num
ber of terms) of a voluntary character which has been 
introduced so far, namely that the exponents he rationally 
independent, is in fact a necessary one. We shall prove, 
namely, the following general theorem :

Theorem 7. Let

4(0 °° (h = 1, . . ., m)

be any m almost-periodie functions with the transitive group 
r as almost-translation group of the set f(f)_, and let p 
denote the number of elements in a minimal generating system 
of I'. Then among the exponents z2, . . . there occur at 
least p which are rationally independent.

Proof. Among the characters involved in the Fourier 
series there certainly occurs some generating system, /, • • - , 
•/(/, of r*. By a remark in section I, out of this generating 
system there can always be chosen a set of just p char
acters, say ÿ , . . ., such that any relation tf'f ... = 1
implies GCD(g^, . . 9u) > 1. Now let nl, . . ., nH be arbi
trarily chosen indices such that

Then the exponents zn,...,zn(f must be rationally inde
pendent; otherwise there would exist a linear relation
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with GCD(g , . . gu) = 1. But by condition 4 this would
imply 

contrary to our hypothesis that no such relation can exist 
with GCI)(gt, . . gi() — 1.

In the case considered, where the alinost-translation 
group /’ is transitive, the characters of / enable us to give 
a certain canonical representation of the m functions 
in the set [f(t)], in which all the functions /h(f) are repre
sented as linear combinations of a finite set of alinost- 
periodic functions which do not depend on h.

Starting from the particular form of the Fourier series 
of the functions fh(f) given in condition 2 of theorem 6, 
namely

(i?) /;,(;) ~ J’z/.s,,) (/> = i...... „<).

we obtain our representation formally by collecting those 
terms for which the characters are the same. Thus we may 
write

un) /,,(/) ~ 2? Z "..''"'“'I d' = 1...... '»>•

where, for the sake of uniformity of notation, we suppose 
that — (,ne ^nl *s simply empty if y does not occur in the

Zn ~Z 
series in (17). Since the series in ( )’s on the right side of 
the relations (18) are independent of /i, the principal step 
in establishing our canonical representation is to prove 
that these series are the actual Fourier series of some 
ahnost-periodic functions of /.
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In general, a subseries of the Fourier series of an al
most-periodic function is not itself the Fourier series of 
any almost-periodic function. In our case, however, each 
series

(19) 

is the Fourier series of an almost-periodic function.
For if ip(S) is any fixed character and we multiply the 

relations (18) by the respective values xp^S^), . .*p(Sm) of 
the conjugate character ip and add the resulting relations, 
we have

Z z(S»)( 
Z?r* \,

or
m I ni

(20) 2 ip(Sj)/h(t) oo x \ y 2 anel/'nl}-
71=1 /er*\h = l / \Zn=Z '

Now, due to the orthogonality of the characters, 
in

X x(sh~) = in or 0 according as / is or is not the 
h =1
chosen character ip. Hence after dividing by m the relation
(20) becomes

111

2? ^(■s;,)/;,(/) ^ 2 

A=1 Xn=i"

Replacing the letter ip by /, we see that the series (19) is 
the Fourier series of the almost-periodic function

111

’ Z / (.S,)/-,/') ~ Z ane‘<‘.
ml,-l x,,~x

Hence, by elementary theorems on almost-periodic functions, 
the Fourier series of the function

in in

2? æ 2? vA*s\) 
h = 1 h = 1
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Zer*

is just the Fourier series of fh(t), as written in (18), so that 

4(0 = £ %(sh) (h=l,..., m)
ZRF*

which is our desired canonical representation of the func
tions fh(t) as linear combinations of a common set of m 
almost-periodic functions, namely the functions

In the next section, where we shall consider functions 
/),(/) which are the roots of an algebraic equation with 
almost-periodic coefficients, we shall return to this canoni
cal representation and prove an interesting property con
cerning the connection between the Fourier exponents of 
each function (7F,(0 and those of the coefficients of the 
equation.

VII. Algebraic Equations with Almost-Periodic 
Coefficients whose Roots have a Transitive Almost- 

Translation Group.
In this last section we return to the consideration of 

the algebraic equation

(21) ?/'" + Xi (0 ?/" -+æ„,_i(0 y+ æni(0 = 0 

with almost-periodic coefficients. In case the discriminant 
D(t) satisfies the condition

(22) G L B I D (0 I > 0,
— oo < t < 4-00

we know that the roots yA(0 are again almost-periodic 
functions. We put the following
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Problem: To indicate necessary and sufficient condi
tions which m functions, z/1 (f), . . ., z/;)((f), assumed to be 
almost-periodic, must fulfill in order that

(a) they may be the roots of an algebraic equation (21) 
of degree m with (eo ipso almost-periodic) coefficients x(0 
satisfying (22), and

(b) the set [y(0] may have a given transitive Abel
ian group 7’ as its almost-translation group.

It is not to be expected that an answer to this problem 
should be as neat as the answer — given in theo
rem 6 of section VI — to the analogous problem bearing 
only on the Fourier series of the functions yh(f). For the 
condition that the functions be distinct has been replaced 
by the condition that the discriminant of the equation (21) 
whose roots they are shall satisfy (22); and it does not 
seem possible to transform this more complex condition 
into a simple condition on the Fourier series of the func
tions. However, for our purpose it suffices to remark that 
— as the yh(t)'s are almost-periodic, and hence bounded — 
the demand that the yh(t)'s satisfy (22) is obviously equiv
alent to requiring that

(23) GLB I ,/„(()-!7 (Z)| > 0.
— oo < t < + oo 

h + g

Thus we may give the following

Answer to the Problem: In order that the almost- 
periodic functions yh(t) shall satisfy the conditions (a) and 
(b) in question, it is necessary and sufficient that they 
satisfy the condition (23), and that their Fourier series 
satisfy conditions 1—4 of theorem 6.
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With the help of this answer we now easily reach the 
following principal result, already alluded to in the intro
duction.

Theorem 8. Corresponding to any arbitrarily given transi
tive Abelian group r, there exists an algebraic equation (21) 
toz7/i ahnost-periodic coefficients x.(t) satisfying (22) and such 
that the set [y(0] of its (eo ipso ahnost-periodic) roots has / 
as its almost-translation group.

P r o o f. If as in section VI we denote by /L, . . ., an 
arbitrarily chosen minimal generating system of the charac
ter group /*, by ax,...,au arbitrary complex numbers 
(each 4= 0), and by Zt, . . ., Z„ arbitrary rationally inde
pendent real numbers, we know already that the m (distinct) 
almost-periodic functions

= Z = • • •’ "0
n = 1

satisfy the conditions 1—4 of theorem 6. We complete the 
proof by showing that we can easily make these functions 
satisfy the additional condition (23), simply by choosing 
the (thus far arbitrary) coefficients an so that the sequence 
I I, . . ., I a(l I of their absolute values decreases rather 
strongly. In order not to spoil too much the generality of 
our example by putting too great restrictions on the | an |’s, 
we base our limitation on the respective orders (1 </;i< m) 
of the characters %n in our minimal generating system 
Xp ..., Xu- Since (xn);" = 1, so that each of the m values 
Zn(St), ■ • -, /„GV is a rn-th root of unity, for any two 
distinct substitutions Sh and S of F the difference
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Xn(SJt)— is either 0 or numerically > 2 sin — . Hence
Ÿ n

for any two distinct functions yh(f) and i/ (0 and any 
real t it is obvious that

WO —.V/01 = San (/nW WiWW
n ■= 1

>

2 I Clp I Sin 'J — 2 (I ap+l I + • • • + I «/< I) >
^P

where p = p(h,g) denotes the smallest (certainly existing) 
index among 1, for which %p(Sh) 4= Thus we
see that our condition (23) is certainly satisfied if we 
choose the coefficients such that for each
n = 1, . . ., ,</,

(24) An = I an I sin ™ — (| an + 1| + • • • +|«t(|) > 0;
Z n

in fact these conditions imply

G L B I z/71(/) — y (t) I > 2 • min (At, . . ., Au) > 0.
00 < f < + 00 

ft 4= <7

Remark. If we wish to have conditions on the an’s 
which depend only on the group /’ rather than on the 
choice of the minimal generating system of T*,
we may replace the conditions (24) by the somewhat 
stronger conditions

(25) |an| sin yT —(|un + 1|+. . .+ |au|) > 0 (n = 1, . . ., <u),

where / (> each y ) denotes the highest order of any ele
ment y in r* (or, equivalently, of any element S in F); or 
we may go further and replace / by m.
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Example. As the simplest possible example of a transitive 
but not cyclic Abelian substitution group, we consider the 
group r of the following four substitutions:

Sj = (1 2341'1 2 3 4/
S2 =

\2 1 4 3/ Sa /1 2 3 4
\ 3 4 1 2

Si =

for which a complete table of character values is

Z1 Z2 Z3 Xi

1 1 1 1
5-j 1 1 — 1 — 1
•$3 1 — 1 1 — 1

1 — 1 — 1 1

Here = 2, and a minimal generating system of I'* is formed 
by any pair from /2, y3, /4, say by y3. Hence, if we let 
and Z-J be any two real numbers with an irrational ratio, and 
let «1 and a2 have any complex values other than 0, the four 
functions

z/1 (f) = «i e1 '‘i( + a2 el 1

y3(t) =—- + a2e1^4

yi (/) = — ai el V — a2 e1 1

will satisfy conditions 1—4 of theorem 6, and hence have F as 
almost-translation group; and will satisfy the algebraic equation 

of type (21). If in addition (since in (25) we have y = y = yQ = 2) 
we take |«i| >|a3| >0, the functions will satisfy (23), that is 
the discriminant of the equation will satisfy (22).

In the figure, where we have chosen a1>u2>0, the posi
tions in the complex plane of the four functions yr(t), y2(t), y3(t), 
yi(t) are denoted respectively by 1, 2, 3, 4 when t = 0, and by 
1, 2, 3, 4 for some other value of /.

In order to show that this set of four almost-periodic func
tions actually has the non-cyclic group F as its almost-trans
lation group — which simple observation was a starting-point 
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of this investigation — we need not, of course, refer to the gen
eral theory above. In fact, it is obvious from the very figure 
that the almost-translation group of the set can contain no other 
substitutions than those in T. That each of these four substi

tutions actually is an almost-translation substitution of this set 
of functions, can be verified immediately with the help of Kro- 
necker’s theorem for the case N = 2.

Remark 1. In the special, classical, case where the 
coefficients aj(0 of the equation (21) are continuous pure 
periodic functions with a common period, say with 
least positive common period p, (and where the condition 
G LB |/)(f)|>0 is equivalent to the condition D(t) 4= 0 
for 0 < t < p), the case lies so clear and is so well known 
that we may leave to the reader the slight task of showing 
how the theory developed in this paper for the general 
case of almost-periodic coefficients may be applied to 
deriving the periodicity of the roots, and the essential 
features of their (ordinary) Fourier series. There is one 
point however which it may be worth while to emphasize: 
namely, that in this case the almost-translation group /' 
(whether it is transitive or intransitive) becomes, as is to 
be expected, merely the usual “exact translation group” 
of the set of roots, and hence is simply the cyclic group 
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composed of all powers of that substitution S which is 
(exactly) performed by p. For it is clear on the one hand, 
that any integral multiple gp of p exactly performs S!l i. e. 
f--performs Sa for every positive e; and on the other, that 
each “fine” translation number of the majorant X(f) must 
be “very near” some gp, and hence must e-perform the 
same substitution S9 which gp exactly performs.

Remark 2. Of somewhat greater interest is the case 
where the coefficients æ,(0 in equation (21) are limit- 
periodic functions with a common period p; that is, 
expressed in terms of the exponents, the case in which the 
module contains only rational multiples of a single 

number, namely a = — . From the general relation

it follows that the exponents of the roots yh(f) likewise are 
rational multiples of a, and hence the roots themselves are 
limit-periodic functions with common period p. We may also 
remark that the really interesting case of a non-cyclic 
transitive group —- interesting because it can never occur 
when the roots are pure periodic — is equally impossible 
in the limit-periodic case. That is to say, in the limit- 
periodic case a transitive almost-translation group F must 
be a cyclic group, i. e. the number p must be equal to 1. 
For, by theorem 7 of section VI, the assumption p > 1 
would imply that the module 4/y contained at least two 
rationally independent numbers, contrary to what we have 
just seen.
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Finally we prove the following theorem concerning the 
canonical representation of the functions yh(t) men
tioned at the end of section VI. We suppose here that 
[z/ (/)] is the set of roots of an algebraic equation (21) with 
almost-periodic coefficients .r(0 satisfying condition (22), 
and that its almost-translation group r is transitive.

We denote the canonical representation of the functions 
by

(26) ;/„(/) = Z z(>V®.Jt) (A = 1......... »1),
Z = r*

where the almost-periodic functions

(Dx(t) cv £ anea'lt
Xn^X

are independent of h. As before, A(f) denotes a majorant 
of the æy(0’s, and Mx the module of their Fourier expo
nents.

Theorem 9. If / is any fixed character in F", then the 
difference — k" of any tivo Fourier exponents of is 
contained in the module Mx.

Proof. Let F and be two distinct Fourier exponents 
of the function CP^(f). (The proof either “goes by default” 
or is trifling in case dA,(/) is identically 0, or has just one 
Fourier exponent). Let a'elZ 1 and a"el,"t be the correspond
ing terms in the Fourier series of ®^(0 (and hence also 
in the Fourier series of /^(O).

i. e. the inequality

In order to prove that 7!—k" belongs to Mx it suffices, 
from Iemma 2 in section IV, to prove that to any e > 0 
there corresponds a d = J(t) > 0 such that the inequality
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(27)

is satisfied by every r belonging to (rv(d)J. Now, since

i c
Vtøl / and f f \ r- / 

\ \y} f \

this is equivalent to proving that to the given t there 
corresponds a ft — ö' (é) > 0 such that (27) is fulfilled by 
every t belonging to {ry(d')}. But ford sufficiently small 
(in fact for d < Z*) we know from remark 4° in section II 
that (t (d )] is equal to the set-theoretical sum of the m 
sets {\S)(d')}, where S belongs to /’. Hence it suffices to 
prove that to the given t there corresponds a d" = d"(e) > 0 
such that the inequality (27) is satisfied whenever t 

belongs to one of the sets {^(S/}(d") }. We complete the 
proof by showing that * «, where a denotes min(|a'|, |ct"|), 

is a suitable value of d".
In fact, let t be a fixed number belonging to any one 

of the m sets in question, say to {r(s;)(d")}. Then by the 
very definition of the translation numbers ,(d") we have 

(28) IJhG+O —0h(O I < = £ « (for — oc < t < + oc).

In the Fourier series of the almost-periodic function

.ViG + O —.V/,(0

the coefficients belonging to the exponents x' and X" are 
given by

o'elZr—a'%(Sh) and a" elÀ''r—a" %(S/()

respectively. As any Fourier coefficient of an almost-peri
odic function f(t) is numerically < L U B \f(t)\, we con
clude from (28) that
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\a'el''T — a %(Sh)\< and | a"elÅ"r—a"z(S7i) | < a, 

and hence (dividing by | a | and | a" | respectively)

|elZ'r—z(5h)| < I and | eu"T —z(S7i) | <-|.

Thus T satisfies the inequality |elÅT—T| < f, i. e. the 
inequality (27), and the proof is complete.

Færdig fra Trykkeriet den 22. December 1937




